Lets Learn together... Happy Reading

" Two roads diverged in a wood, and I,
I took the one less traveled by,
And that has made all the difference "-Robert Frost

SOLVING QUADRATIC EQUATION BY GRAPHICAL METHOD

                                                  Here is a simple example to solve quadratic equation. This is just the tenth grade mathematics. I wrote the code to solve it using MATLAB. Here I mainly focused on the GUI and the graph related to the equation.
Additional Information: To compute complex calculation use Texas Instruments.

function quad_eqn()
%Solving the quadratic equation by graphical method
%Quadratic equation is split into two representing two equations
%parabola and a straight line.
%The x-co-ordinates of the points of intersection of the parabola and the
%straight line will give the roots of the given quadratic equation.





clear all;
%global to the functions inside parabola()
global e1 e2 e3 g1 g2 g3 sol;




figure('units','pixels','position',[200 300 500 300],'menubar','none','numbertitle','off','resize','off','color','w');
title('SOLVING THE QUADRATIC EQUATION','fontsize',20,'fontname','Time New Roman','color','k');
axis off;
uicontrol('style','push','units','pixel','position',[10,200,220,30],'string','ENTER THE GRAPH EQUATION:');
uicontrol('style','push','units','pixel','position',[10,130,220,30],'string','ENTER THE EQUATION OF STRAIGHT LINE:');
sol=uicontrol('style','push','units','pixel','position',[10,60,220,30],'string','SOLUTION SET:');
set(sol,'Visible','off');




%Equation of a graph
uicontrol('style','edit','units','pixel','position',[240,200,40,30],'fontsize',14,'callback',{@graphx2});
uicontrol('style','push','units','pixel','position',[290,200,40,30],'string','x^2');
uicontrol('style','edit','units','pixel','position',[340,200,40,30],'fontsize',14,'callback',{@graphx});
uicontrol('style','push','units','pixel','position',[390,200,40,30],'string','x');
uicontrol('style','edit','units','pixel','position',[440,200,40,30],'fontsize',14,'callback',{@graphc});




%Equation to solve:
%Provide the input in each text box.
%If the co-efficient of x not present then give the value as 0.

uicontrol('style','edit','units','pixel','position',[240,130,40,30],'fontsize',14,'callback',{@equx2});
uicontrol('style','push','units','pixel','position',[290,130,40,30],'string','x^2');
uicontrol('style','edit','units','pixel','position',[340,130,40,30],'fontsize',14,'callback',{@equx});
uicontrol('style','push','units','pixel','position',[390,130,40,30],'string','x');
uicontrol('style','edit','units','pixel','position',[440,130,40,30],'fontsize',14,'callback',{@equc});




    function graphx2(source,event)
        g1=get(source,'string');
        
    end




 function graphx(source,event)
        g2=get(source,'string');
        
 end




 function graphc(source,event)
        g3=get(source,'string');
        
 end




 function equx2(source,event)
        e1=get(source,'string');
        
 end




 function equx(source,event)
        e2=get(source,'string');
        
 end


 function equc(source,event)
        e3=get(source,'string');
        
        solve();
    end


    function solve()
        %Initialize the variables
        inc=0;
        %preallocate the memory
        p=zeros(1,4);
        r=zeros(1,4);
      
    try
        %Convert the string into number  
      gr1=str2double(g1);
      gr2=str2double(g2);
      gr3=str2double(g3);
      eq1=str2double(e1);
      eq2=str2double(e2);
      eq3=str2double(e3);
    










  
      %Solving the two equations
        a=gr1-eq1;
        b=gr2-eq2;
        c=gr3-eq3;
        
    x=-10:10;   
    temp=power(x,2);
    y=(gr1*temp)+(gr2*x)+gr3;%ax^2+bx+c
     z=(a*temp)+(b*x)+c;
     
      catch
          display('ERROR OCCURRED');
          close all hidden;
          return
    end
     for i=1:21
        if(y(i)==z(i))
           inc=inc+1;
           p(inc)=y(i);
           r(inc)=x(i);
         end
     end
set(sol,'Visible','on');
if(inc==2)
     n1=num2str(r(1));
     n2=num2str(r(2));
     solset=strcat('{',n1,',',n2,'}');
     uicontrol('style','text','units','pixel','position',[230,60,200,30],'String',solset);
else
     uicontrol('style','text','units','pixel','position',[230,60,200,30],'String','none');
end
figure('units','pixels','position',[100 50 1000 650],'menubar','none','numbertitle','off','resize','off','color','w');


    plot(x,y);
    hold on
    plot(x,z);
    xlabel('X- axis');
ylabel('Y-axis');
title('GRAPH','fontsize',14,'color','k');
    if(inc>0)
      for i=1:inc;
        n1=num2str(r(i));
        n2=num2str(p(i));
        point1=strcat('(',n1,',',n2,')');
         text(r(i),p(i),point1);
      end
     end
    end


end


GUI

GRAPH

like button Like "IMAGE PROCESSING" page

1 comments:

Movies Gallery 2011 said... Reply to comment

Thanks for sharing your info. I really appreciate your efforts and I will be waiting for your further write ups thanks once again.
Vee Eee Technologies| Vee Eee Technologies|

Enjoyed Reading? Share Your Views

Previous Post Next Post Home
Related Posts Plugin for WordPress, Blogger...
Google ping Hypersmash.com